# Guidelines for Experimental Design

**General Considerations & Best Practices** 

### Importance of experimental design

| Design Sequencing QC | Analysis |
|----------------------|----------|
|----------------------|----------|



Experiment impossible to analyse

#### RNA-seq

- Many types of RNA-seq experiment
- Experimental design depends on type
  - Quantitative: e.g. differential gene expression, alternative splicing
  - Qualitative: e.g. transcript discovery, identification of poly(A) sites
- Mostly focus on differential gene expression (DGE)



By Dave Yeats using cmx.io

## Replication

- Technical replicates:
  - Rarely needed (except during method development, where want to differentiate technical and biological variability)
  - Main source of technical variability is RNA prep and library prep, not sequencing
- Biological replicates:
  - Minimise or control for biological variability (so focus on conditions)
  - For example:
    - choose embryos from same clutch
    - or control for clutch in analysis



From http://scotty.genetics.utah.edu/help.html

## Sources of variance

- Biological variance natural variance
  - Zebrafish lots of replicates, but if pool then variance reduced and can lose signal
- Technical variance from RNA & library prep
- Poisson variance counting noise; high variance at low counts



## How many replicates? (1/2)

 Often trade off between number of samples and sequencing depth

• DGE:

- More samples best (if cost allows), because reduces effect of biological variability
- Can always sequence more deeply, but hard to add samples (batch effect)
- Generally never < 4 samples per condition, but more better
- We never do < 6 samples and often 12+
- 10 million reads usually enough



From Zhang et al., 2014 – "A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data"

## How many replicates? (2/2)

- Transcript discovery:
  - Sequencing depth important (want overlapping reads over whole transcript)
  - Enrichment for desired transcripts, e.g. by size selection
  - Range of tissues, developmental stages or treatments
- http://scotty.genetics.utah.edu/ helps design experiment (requires similar or pilot data, plus costs)



## What type of reads?

- For qualitative experiments, want:
  - Stranded library
  - Long reads (100 bp +)
  - Paired end reads
- Not important for quantitative experiments
  - 75 bp probably optimal for DGE (Chhangawala et al., 2015 – "The impact of read length on quantification of differentially expressed genes and splice junction detection")



### **Ribosomal RNA**

- Usually want to sequence mRNA, but total RNA is mostly rRNA
- Either enrich for mRNA or deplete rRNA
- mRNA enrichment by oligo (dT):
  - Cheaper and less noisy, but leads to 3' bias and ignores some ncRNAs
- rRNA depletion by Ribo-Zero:
  - Expensive and doesn't work as well with zebrafish as for other model organisms (designed for human, mouse and rat)



## RNA spike-ins

- ERCC spike-ins set of transcripts of various lengths and concentrations
- Suggested to aid normalisation
- But are expensive and don't actually improve normalisation



From https://www.nist.gov/programs-projects/external-rna-controls-consortium

## Batch effects

- Batch effects are technical variation between groups of samples
- RNA prep and library prep are very sensitive to batch effects
- Make sure all samples are prepared in the same way as far as possible
  e.g. all samples prepared by same person at same time using same reagents
- Otherwise control for batch in analysis
  - But requires more samples to maintain power

## Controlling for batch

| Sample   | Genotype  |
|----------|-----------|
| sample_1 | wild_type |
| sample_2 | wild_type |
| sample_3 | wild_type |
| sample_4 | wild_type |
| sample_5 | knockout  |
| sample_6 | knockout  |
| sample_7 | knockout  |
| sample_8 | knockout  |

| Sample   | Genotype  | Batch  |
|----------|-----------|--------|
| sample_1 | wild_type | Friday |
| sample_2 | wild_type | Friday |
| sample_3 | wild_type | Monday |
| sample_4 | wild_type | Monday |
| sample_5 | knockout  | Friday |
| sample_6 | knockout  | Friday |
| sample_7 | knockout  | Monday |
| sample_8 | knockout  | Monday |

| Sample    | Genotype  | Batch  |
|-----------|-----------|--------|
| sample_1  | wild_type | Friday |
| sample_2  | wild_type | Friday |
| sample_3  | wild_type | Friday |
| sample_4  | wild_type | Monday |
| sample_5  | wild_type | Monday |
| sample_6  | wild_type | Monday |
| sample_7  | knockout  | Friday |
| sample_8  | knockout  | Friday |
| sample_9  | knockout  | Friday |
| sample_10 | knockout  | Monday |
| sample_11 | knockout  | Monday |
| sample_12 | knockout  | Monday |

## Confounding

- Don't confound batch with conditions otherwise analysis impossible
  - Best to randomise samples, so batches evenly distributed across conditions

| Sample   | Genotype  | Clutch   |
|----------|-----------|----------|
| sample_1 | wild_type | clutch_1 |
| sample_2 | wild_type | clutch_1 |
| sample_3 | wild_type | clutch_1 |
| sample_4 | wild_type | clutch_1 |
| sample_5 | knockout  | clutch_2 |
| sample_6 | knockout  | clutch_2 |
| sample_7 | knockout  | clutch_2 |
| sample_8 | knockout  | clutch_2 |

| Sample   | Genotype  | Clutch   |
|----------|-----------|----------|
| sample_1 | wild_type | clutch_1 |
| sample_2 | wild_type | clutch_2 |
| sample_3 | wild_type | clutch_2 |
| sample_4 | wild_type | clutch_1 |
| sample_5 | knockout  | clutch_1 |
| sample_6 | knockout  | clutch_1 |
| sample_7 | knockout  | clutch_2 |
| sample_8 | knockout  | clutch_2 |

#### Confounded

#### Not confounded

#### Clutch batch effect



### Plate effect



#### Plate effect confirmation



- 96 wild-type embryos
- RNA extracted in rows, but libraries made in columns

| Columns | DE regions |
|---------|------------|
| 1 vs 2  | 78         |
| 1 vs 3  | 749        |
| 2 vs 3  | 225        |

Better plate design



## Multiplexing

- Sequencing is quite consistent, but still best to pool samples and sequence across multiple lanes
  - Reason why difficult to add more samples to an experiment
- Multiplexed libraries need to be balanced to ensure even read depth
- Can check with MiSeq run
- We prefer to exclude outliers (low read depth)
  - Another reason to have lots of samples



From Illumina

## Visualisation

- Important to visualise your data at each stage of analysis
- e.g. PCA to identify outliers



## Best practices (1/2)

- Avoid Excel for analysis
  - Fine for exploring data, but don't export data from Excel
  - Ziemann et al., 2016 "Gene name errors are widespread in the scientific literature"
  - e.g. sept2 converted to 2-Sep (human gene now renamed to SEPTIN2)



## Best practices (2/2)

- Don't (subconsciously) cherrypick data
  - Conclusions should be robust and not rely on filtering data in an arbitrary way
  - e.g. can't take a list of lipid genes and just assess those for differential expression
- Write down everything you do
  - Future you will thank you when you analyse your data and try to discover the reason for an unexpected batch effect
  - Sequence deposition requires good metadata





## Altruistic reasons for data sharing

- Contribute to databases we use on a daily basis (e.g. Ensembl, ZFIN, GO, etc...)
- Reduce duplication of effort (Reviewer 2: "Comparison to ChIP-seq data is necessary to...")
- Enable more discovery (other people have completely different questions; data reuse statement)
- Gives non-bioinformaticians access to NGS data

## Selfish reasons for data sharing

- Encourages comprehensive metadata documentation
- Easy data access for you and for others (=> citations)
- Data access mandatory for most funders and journals
- Appreciated by reviewers ("there is tremendous utility for researchers for fully processed, discrete, clear and unambiguous annotated DE gene lists")
- Raises awareness of your work outside your own field
- Good for your reputation "they know what they are doing"

### Analysis – In-house sequencing QC

| Library            | Run Id              | Lane | tag<br>metrics<br>①                 | adapter        | gc<br>fraction           | insert<br>size                         | qX<br>yield              | ref<br>match                              | sequence<br>mismatch      |
|--------------------|---------------------|------|-------------------------------------|----------------|--------------------------|----------------------------------------|--------------------------|-------------------------------------------|---------------------------|
| Sample<br>Name     | –<br>Num.<br>Cycles | No   | decode<br>rate, %<br>CV%<br>(hops%) | adapters,<br>% | fraction,<br>%           | quartiles,<br>bases                    | yield,<br>Kb             | top two                                   | average<br>mismatch,<br>% |
| <b>NT1187928</b> J | 24127<br>158        | 1    | 99.01<br>15.13                      | 0.23<br>0.16   | <i>36.7</i><br>46.7 47.7 | <i>100:300</i><br>139 181 239 (2/0.65) | 13,599,500<br>13,447,473 | Danio rerio: 85.0<br>Oryzias latipes: 7.6 | 3.79<br>3.60              |
| 📲 NT1187928J       | 24127<br>158        | 2    | 98.98<br>15.19                      | 0.22<br>0.16   | <i>36.7</i><br>46.7 47.7 | <i>100:300</i><br>139 182 240 (1/0.64) | 13,712,493<br>13,572,606 | Danio rerio: 84.7<br>Oryzias latipes: 7.6 | 3.85<br>3.98              |



## Analysis – FastQC (+ multiqc)

- Sequence quality
- Sequence content
- GC content
- N content
- Duplication
- Overrepresentation
- Adapter content



## Analysis – Improving read quality

- Trim low quality bases
- Remove adapters
- Error correction
- e.g. Trim Galore! (cutadapt wrapper)



## Analysis – Alignment

- Good zebrafish reference genome
  - Splice-aware aligner
  - Annotation optional
  - e.g. TopHat2, HISAT2, STAR
- Good zebrafish transcriptome
  - Pseudoalignment
  - Rapid
  - e.g. Salmon, kallisto



From https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/03\_alignment.html

#### Analysis – Alignment QC

Gene-Body Coverage

 QoRTs (Quality of RNA-seq Tool-Set)



Percentile of Gene Body (5'->3')

#### Analysis – Quantification

• e.g. htseq-count, STAR

|                            |                                                 | intersection<br>_strict      | intersection<br>_nonempty |
|----------------------------|-------------------------------------------------|------------------------------|---------------------------|
| read<br>gene_A             | gene_A                                          | gene_A                       | gene_A                    |
| gene_A                     | gene_A                                          | no_feature                   | gene_A                    |
| gene_A gene_A              | gene_A                                          | no_feature                   | gene_A                    |
| gene_A gene_A              | gene_A                                          | gene_A                       | gene_A                    |
| gene_A<br>gene_B           | gene_A                                          | gene_A                       | gene_A                    |
| gene_A gene_B              | ambiguous<br>(both genes with<br>nonunique all) | gene_A                       | gene_A                    |
| gene_A<br>gene_B           | (both gene                                      | ambiguous<br>s withnonun     | ique all)                 |
| read<br>?<br>gene_A gene_B |                                                 | ment_not_uniq<br>s withnonun |                           |

## Analysis – Differential Expression

• e.g. DESeq2, edgeR

| Gene               | p-value  | Adjusted p-value | Log <sub>2</sub> fold change |
|--------------------|----------|------------------|------------------------------|
| ENSDARG00000068969 | 5.13E-16 | 9.95E-13         | 4.296634713                  |
| ENSDARG00000071662 | 2.31E-25 | 8.20E-22         | 5.367426329                  |
| ENSDARG00000031885 | 2.60E-23 | 7.93E-20         | 5.248888274                  |
| ENSDARG00000043196 | 7.32E-08 | 7.80E-05         | -3.715117121                 |
| ENSDARG00000075524 | 3.91E-15 | 6.94E-12         | 4.639355983                  |
| ENSDARG00000036787 | 1.22E-26 | 6.51E-23         | 4.384183256                  |
| ENSDARG00000079347 | 5.05E-08 | 5.67E-05         | -2.564399561                 |
| ENSDARG00000041381 | 4.07E-09 | 5.11E-06         | 3.220579557                  |
| ENSDARG00000070062 | 3.49E-14 | 4.97E-11         | 4.454100519                  |

## Conclusion



From Conesa et al., 2016 – "A survey of best practices for RNA-seq data analysis"

# Thank You

Any Questions?