
Zebrafish Dataset Practical 1 

Before you start, make sure you’ve read the document that describes the 
zebrafish dataset we’re using in this practical. And make sure you’ve put the 
required files (deseq2-results.tsv and samples.tsv) in your home 
directory. 

To begin, here are three exercises that require using the command line in 
Terminal: 

1. Using the awk and wc commands, work out how many genes are 
significantly differentially expressed (i.e. adjusted p-value < 0.05) for each 
of the four comparisons in deseq2-results.tsv. 

2. Using the cut command, make four separate files, each of which contains 
just one of the comparisons. So each file will contain Ensembl ID, p-value, 
adjusted p-value, log2 fold change, chromosome, start, end, strand, 
biotype, name, description, 24 count columns and 24 normalised count 
columns. Keep these four files because you’ll need them for later 
exercises. 

3. Filter the four files you have made using awk so that they only contain the 
significantly differentially expressed genes. Keep these four files as well. 

The rest of this practical uses R, so open RStudio and load the tidyverse 
packages: 

library(tidyverse) 

Read in the DESeq2 results file: 

# assign the results file name to a variable 
deseq_results_file <- 'deseq2-results.tsv' 
 
# load data 
deseq_results <- read_tsv(deseq_results_file) 

Volcano plot 

Prepare the data for making a volcano plot. We need to convert the adjusted 
p-values to -log10(adjusted p-value). Also, we are going to make a new column 
that marks whether a gene is significantly different or not and another one 
that shows whether the significant genes are up or down. 



# make -log10p column 
deseq_results <-  
  mutate(deseq_results,  
        uninf_5dpf_hom_vs_sib_log10p = -log10(uninf_5dpf_hom_vs_sib_adjp)) 
# make significant column 
deseq_results <-  
  mutate(deseq_results,  
          uninf_5dpf_hom_vs_sib_sig =  
           !is.na(uninf_5dpf_hom_vs_sib_adjp) &  
            uninf_5dpf_hom_vs_sib_adjp < 0.05 ) 
# make factor for up and down genes 
deseq_results <-  
  mutate(deseq_results,  
         uninf_5dpf_hom_vs_sib_up_or_down =  
           ifelse(uninf_5dpf_hom_vs_sib_sig &  
                    uninf_5dpf_hom_vs_sib_log2fc > 0, 'Up', 
                  ifelse(uninf_5dpf_hom_vs_sib_sig &  
                           uninf_5dpf_hom_vs_sib_log2fc < 0, 'Down', 
                         'Not Sig') ) ) 
# sort by Adjusted pvalue for uninf_5dpf_hom_vs_sib comparison 
deseq_results <- arrange(deseq_results, desc(uninf_5dpf_hom_vs_sib_adjp)) 

The basic volcano plot shows the -log10(p-value) against the log2(fold change) 
for each gene, with the genes coloured by whether the gene is up or down or 
not significant. 

# plot adjusted pvalue against log2 fold change 
# with up coloured in orange and down coloured in blue 
volcano_plot <-  
  ggplot(data = deseq_results,  
  # This sets the data for the plot 
        aes(x = uninf_5dpf_hom_vs_sib_log2fc, y = 
uninf_5dpf_hom_vs_sib_log10p,  
            colour = uninf_5dpf_hom_vs_sib_up_or_down)) + 
  # and specifies we want to plot log10pval against log2fc and  
  # colour it by the up_or_down column 
  # these aesthetics will apply to any other geoms added 
    geom_point() + 
  # this says we want to plot the data as points 
    scale_colour_manual(name = "", values = c(Up = '#cc6600', Down = 
'#0073b3', 
                                              `Not Sig` = "grey80")) 
  # and this explicitly sets the colours for the 3 categories 

To print the ggplot object use print(volcano_plot). We can also change the 
grey background and have better axis titles. This also shows how to remove 
the legend if you want to. 

	 	



volcano_plot <- volcano_plot + 
  # this says take the previous plot object and add to it 
  theme_minimal() + 
  # a new theme that changes the grey background 
  labs(x = expr(log[2]*'(Fold Change)'), y = expr(log[10]*'(Adjusted 
pvalue)')) + 
  # better axis titles 
  guides(colour = "none") 
  # and remove the legend 

The code above shows how ggplot objects can be built up by creating a basic 
object and then progressively adding more to it. 

Next we can add labels to some of the points which meet certain criteria. For 
example we can filter the data based on log2(fold change) and adjusted p-
value. 

# data to highlight specific genes 
biggest_changers <-  
  filter(deseq_results,  
  # filter the deseq_results object 
         abs(uninf_5dpf_hom_vs_sib_log2fc) > 2,  
  # for rows with an absolute log2fc greater than 2 
         uninf_5dpf_hom_vs_sib_adjp < 0.05 ) 
  # and an adjusted pvalue less than 0.05 

Now we add the labels using the ggrepel https://github.com/slowkow/ggrepel 
package. This is a package designed to better position point labels on plots so 
that all the labels are legible. 

# load the ggrepel package 
library(ggrepel) 
labelled_plot <- volcano_plot + 
  geom_text_repel(data = biggest_changers, aes(label = Name)) 
  # add text to the plot using the biggest changers data frame 
  # and use the Name column as the label 
  # the x, y and column aesthetics are inherited from the original ggplot 
object 

Or we could do just the top 10 genes by adjusted p-value. 

# get the top 10 genes by adjusted pvalue 
top_10_genes <-  
  arrange(deseq_results, uninf_5dpf_hom_vs_sib_adjp) %>%  
  # sort by adjusted pvalue 
  head(10) 
  # and take the top 10 rows 
 
top_10_plot <- volcano_plot + 
  geom_label_repel(data = top_10_genes, aes(label = Name)) 
  # add labels using the top10 data. 



To	label	genes	on	the	plot	from	a	list	of	gene	ids,	you	need	to	find	which	rows	contain	
your	gene	and	subset	to	just	those	rows.	

# start with a vector of gene ids	
geneIds <- c("ENSDARG00000044280", "ENSDARG00000022817",	
             "ENSDARG00000001993", "ENSDARG00000099667",	
             "ENSDARG00000099738", "ENSDARG00000019521")	
# function to test which row number a gene is in	
which.gene <- function(gene_id, column) {	
  which(column == gene_id)	
}	
# this runs the which.gene function on the vector of gene ids	
# so what you get back is a vector of row numbers	
# which can be used to subset the deseq_results object	
row_numbers <- sapply(geneIds, which.gene, deseq_results$GeneID)	
highlight_genes <- deseq_results[ row_numbers, ]	
	
# then you can make a new volcano plot using the highlight_genes	
# object in geom_label_repel	
specific_genes_volcano_plot <- volcano_plot +	
  geom_label_repel(data = highlight_genes, aes(label = Name))	

Extra exercises 

1. Try replotting the volcano plot without polr2a. You’ll need to make a 
data.frame without polr2a in it using filter. 

2. What does the plot look like if you don’t sort the data by adjusted p-value 
first? Rerun the code to load the data and create the -log10p, sig and 
up_or_down columns but don’t sort by adjusted p-value. 

Count Plot 

To plot the normalised counts for each sample for a gene it helps to have a 
table of the sample info. This samples file has different properties of the 
condition (stage, treatment and genotype) in separate columns. 

	 	



 

sample_info_file <- 'samples.tsv' 
sample_info <- read_tsv(sample_info_file) 
# set sample column name 
names(sample_info)[1] <- 'sample' 
 
# split condition into three separate columns 
sample_info <- separate(sample_info, condition,  
                        into = c('treatment', 'stage', 'genotype'), sep = 
"_") 
 
# set levels of treatment, stage and genotype 
sample_info$treatment <- fct_relevel(sample_info$treatment, "uninf", 
"inf") 
sample_info$stage <- fct_relevel(sample_info$stage, '3dpf', '5dpf', 
'7dpf') 
sample_info$genotype <- fct_relevel(sample_info$genotype, 'wt', 'het', 
'hom') 
 
# get uninf_5dpf samples in order wt, het, hom 
# rbind binds rows together to make a new data frame 
sample_info_uninf_5dpf <- rbind( 
  filter(sample_info, treatment == "uninf", stage == "5dpf", genotype == 
"wt"), 
  filter(sample_info, treatment == "uninf", stage == "5dpf", genotype == 
"het"), 
  filter(sample_info, treatment == "uninf", stage == "5dpf", genotype == 
"hom") 
) 
 
# set levels 
sample_info_uninf_5dpf$sample <-  
  fct_relevel(sample_info_uninf_5dpf$sample,  
              as.character(sample_info_uninf_5dpf$sample) ) 
 
# make a new column of sibs and mutants, rather than wt, hets, homs 
sample_info_uninf_5dpf <-  
  mutate(sample_info_uninf_5dpf,  
         mutant = str_replace(genotype, "wt", "sib")) %>% 
  mutate(mutant = str_replace(mutant, "het", "sib")) %>% 
  mutate(mutant = str_replace(mutant, "hom", "mut")) 
# set levels 
sample_info_uninf_5dpf$mutant <-  
  fct_relevel(sample_info_uninf_5dpf$mutant, 'sib', 'mut') 

To produce a count plot we subset the normalised_counts object to the counts 
for a single gene. Then we transform the data.frame so that every observation 
is in its own row for ggplot. 



normalised_counts <-  
  select(deseq_results, "GeneID", matches('uninf_5dpf_.*_normalised')) %>% 
  rename_all(list(~ str_replace(., "_normalised_count", ""))) 
 
# get a specific gene 
counts_for_gene <- filter(normalised_counts, GeneID == 
"ENSDARG00000055838") 

# transform from wide to long 
counts_for_gene <- pivot_longer(counts_for_gene, -GeneID,  
                                names_to = 'sample', values_to = 'count') 

# set levels of sample variable 
counts_for_gene$sample <- factor(counts_for_gene$sample, 
                                 levels = 
c(unique(counts_for_gene$sample))) 

To see what it looks like now, try head(counts_for_gene). To see the counts for 
each individual sample we can plot sample on the x-axis and count on the y, 
like this: 

basic_count_plot <- ggplot(data = counts_for_gene) + 
  geom_point( aes(x = sample, y = count) ) +  
  theme_minimal() + 
  theme(axis.text.x = element_text(angle = 90)) 

We can customise the plot to make it look nicer by using the information in the 
sample_info_uninf_5dpf object. 

	 	



# join counts to sample data 
counts_plus_sample_info_uninf_5dpf <- merge(sample_info_uninf_5dpf, 
counts_for_gene) 
 
# set up a colour-blind friendly colour palette 
colour_blind_palette <-  
  c( 'blue' = rgb(0,0.45,0.7), 
     'vermillion' = rgb(0.8, 0.4, 0), 
     'blue_green' = rgb(0, 0.6, 0.5), 
     'yellow' = rgb(0.95, 0.9, 0.25), 
     'sky_blue' = rgb(0.35, 0.7, 0.9), 
     'orange' = rgb(0.9, 0.6, 0), 
     'purple' = rgb(0.8, 0.6, 0.7), 
     'black' = rgb(0, 0, 0) ) 
colour_palette <- unname(colour_blind_palette) 
 
# plot as points in different colours 
sample_count_plot_coloured <- ggplot(data = 
counts_plus_sample_info_uninf_5dpf) + 
  geom_point( aes(x = sample, y = count,  
                  colour = mutant), size = 2 ) +  
  theme_minimal() + 
  scale_colour_manual(values = colour_palette) + 
  theme(axis.text.x = element_text(angle = 90)) 

We could also have the shape of the points represent the actual genotypes, in 
case we want to check whether the hets are similar to the wild types. 

# plot with genotype as shape of points 
sample_count_plot_colour_shape <-  
  ggplot(data = counts_plus_sample_info_uninf_5dpf) + 
    geom_point( aes(x = sample, y = count,  
                    shape = genotype, colour = mutant), 
                size = 2) +  
    theme_minimal() + 
    scale_colour_manual(values = colour_palette) + 
    theme(axis.text.x = element_text(angle = 90)) 

If we have a large number of samples a boxplot might be more appropriate. 

# boxplot  
basic_boxplot <- ggplot(data = counts_plus_sample_info_uninf_5dpf) + 
  geom_boxplot( aes(x = mutant, y = count, fill = mutant)) +  
  theme_minimal() + 
  scale_fill_manual(values = colour_palette) 

Or we could plot the points grouped by mutant status rather than by sample. 

	 	



# plot points by mutant status 
points_by_mutant <- ggplot(data = counts_plus_sample_info_uninf_5dpf) + 
  geom_point( aes(x = mutant, y = count,  
                  shape = genotype, colour = mutant) ) +  
  theme_minimal() + 
  scale_colour_manual(values = colour_palette) 

The points for each mutant status appear at the same x position and may plot 
on top of each other. To avoid this we can add a random shift left or right. 

# jitter points to prevent overplotting 
set.seed(163754) 
points_jittered <- ggplot(data = counts_plus_sample_info_uninf_5dpf) + 
  geom_point( aes(x = mutant, y = count,  
                  shape = genotype, colour = mutant), 
              position = position_jitter(width = 0.2, height = 0)) +  
  theme_minimal() + 
  scale_colour_manual(values = colour_palette) 

Or we could plot the points on top of the boxplot. For this we have to change 
the shape of the points with scale_shape_manual(values = c(21,24,22)) and 
use the fill aesthetic rather than colour. Otherwise the orange points will not 
show up on the orange background of the boxplot. 

# add to boxplot 
set.seed(172) 
boxplot_points_jittered <-  
  ggplot(data = counts_plus_sample_info_uninf_5dpf) + 
    geom_boxplot( aes(x = mutant, y = count, fill = mutant), 
                  outlier.shape = NA ) +  
    geom_point( aes(x = mutant, y = count,  
                    shape = genotype, fill = mutant), 
                size = 2, 
                position = position_jitter(width = 0.2, height = 0)) +  
    theme_minimal() + 
    scale_fill_manual(values = colour_palette, 
                      guide = guide_legend(override.aes = list(shape = 
NA))) +  
    scale_shape_manual(values = c(21,24,22)) 

What happens if you don’t use outlier.shape = NA? 

Heatmap 

To plot a heatmap of the significantly differentially expressed genes we need 
to subset the deseq_results data frame, like this: 

sig_results <- filter(deseq_results, uninf_5dpf_hom_vs_sib_sig) %>% 
  arrange(uninf_5dpf_hom_vs_sib_adjp) 



We need to scale the normalised counts somehow or the colour scale will be 
affected by the most highly expressed genes. We centre the data by 
substracting the mean value for each gene and scale by dividing by the 
standard deviation for each gene using the scale function. scale works on 
columns and our data is by row so we need to transpose it (twice!). 

rownames(sig_results) <- sig_results$GeneID 
sig_normalised_counts <- select(sig_results, 
matches('uninf_5dpf_.*_normalised')) %>% 
  rename_all(list(~ str_replace(., "_normalised_count", ""))) 
 
# scale 
sig_normalised_counts_scaled <- as.data.frame(t( scale( 
t(sig_normalised_counts) ) )) 

Then we cluster the rows of the data so that similar genes are grouped 
together. 

# function to cluster the rows of a data frame 
cluster <- function(df) { 
    df <- as.data.frame(df) 
    distance_matrix <- dist(df) 
    clustering <- hclust(distance_matrix) 
    df_ordered <- df[ clustering$order, ] 
    return(df_ordered) 
} 
 
# cluster rows 
sig_normalised_counts_scaled_clustered <- 
cluster(sig_normalised_counts_scaled) 

Then we make the data long, make sure the levels of the factors are set 
correctly and plot the heatmap with geom_raster (geom_raster). 

	 	



# add a Gene ID column and set levels 
sig_normalised_counts_scaled_clustered$GeneID <-  
  factor(rownames(sig_normalised_counts_scaled_clustered), 
         levels = rev(rownames(sig_normalised_counts_scaled_clustered))) 

# transform from wide to long 
sig_scaled_clustered_long <-  
  pivot_longer(sig_normalised_counts_scaled_clustered, -GeneID,  
               names_to = 'sample', values_to = 'count') 

# set levels of sample 
sig_scaled_clustered_long$sample <-  
  factor(sig_scaled_clustered_long$sample, 
         levels = unique(sig_scaled_clustered_long$sample)) 
 
# create heatmap 
clustered_heatmap <-  
  ggplot(data = sig_scaled_clustered_long) +  
    geom_raster( aes(x = sample, y = GeneID, fill = count) ) 
# the data is sig_scaled_clustered_long 
# The aesthetics map the x-axis to sample, the y-axis to GeneID and  
# the fill colour of the heatmap tiles to count 

Each gene ID appears as a y-axis label and they cannot be read. Also the 
sample names aren’t legible either. We can remove both sets of labels with 
theme_void(). 

clustered_heatmap <-  
  ggplot(data = sig_scaled_clustered_long) +  
    geom_raster( aes(x = sample, y = GeneID, fill = count) ) + 
    theme_void() 

Then, if we want, we can add back the x-axis labels and rotate them to make 
them legible. We’ve also changed the colour scheme using the viridis package 
(viridis). 

library(viridis) 
clustered_heatmap <-  
  ggplot(data = sig_scaled_clustered_long) +  
    geom_raster( aes(x = sample, y = GeneID, fill = count) ) + 
    scale_fill_viridis(option = 'plasma') +  
    theme_void() +  
    theme(axis.text.x =  
            element_text(colour = "black", size = 12 , angle = 90, 
                         hjust = 1, vjust = 0.5)) 


